Modeling the Interactions between Discrete and Continuous Causal Factors in Bayesian Networks
نویسندگان
چکیده
The theory of causal independence is frequently used to facilitate the assessment of the probabilistic parameters of discrete probability distributions of complex Bayesian networks. Although it is possible to include continuous parameters in Bayesian networks as well, such parameters could not, so far, be modeled by means of causal-independence theory, as a theory of continuous causal independence was not available. In this paper, such a theory is developed and generalized such that it allows merging continuous with discrete parameters based on the characteristics of the problem at hand. This new theory is based on the discovered relationship between the theory of causal independence and convolution in probability theory, discussed in detail for the first time in this paper. Furthermore, the new theory is used as a basis to develop a relational theory of probabilistic interactions. It is also illustrated how this new theory can be used in connection with special probability distributions. C © 2014 Wiley Periodicals, Inc.
منابع مشابه
A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملProject Portfolio Risk Response Selection Using Bayesian Belief Networks
Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملUsing Bayesian Networks and Simulation for Data Fusion and Risk Analysis
Bayesian networks (BNs) were pioneered to solve problems in Artificial Intelligence (AI) and have proven successful in “intelligent” applications such as medical expert systems, speech recognition, and fault diagnosis. In practical terms, one of the major benefits from using BNs is in that probabilistic and causal relationships among variables are represented and executed as graphs and can thus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Intell. Syst.
دوره 30 شماره
صفحات -
تاریخ انتشار 2015